Modern Australian
Men's Weekly

.

How the 2016 bleaching altered the shape of the northern Great Barrier Reef

  • Written by Selina Ward, Senior Lecturer, School of Biological Sciences, The University of Queensland

In 2016 the Great Barrier Reef suffered unprecedented mass coral bleaching – part of a global bleaching event that dwarfed its predecessors in 1998 and 2002. This was followed by another mass bleaching the following year.

This was the first case of back-to-back mass bleaching events on the reef. The result was a 30% loss of corals in 2016, a further 20% loss in 2017, and big changes in community structure. New research published in Nature today now reveals the damage that these losses caused to the wider ecosystem functioning of the Great Barrier Reef.

Fast-growing staghorn and tabular corals suffered a rapid, catastrophic die-off, changing the three-dimensional character of many individual reefs. In areas subject to the most sustained high temperatures, some corals died without even bleaching – the first time that such rapid coral death has been documented on such a wide scale.

Read more: It's official: 2016's Great Barrier Reef bleaching was unlike anything that went before

The research team, led by Terry Hughes of James Cook University, carried out extensive surveys during the two bleaching events, at a range of scales.

First, aerial surveys from planes generated thousands of videos of the reef. The data from these videos were then verified by teams of divers in the water using traditional survey methods.

Finally, teams of divers took samples of corals and investigated their physiology in the laboratory. This included counting the density of the microalgae that live within the coral cells and provide most of the energy for the corals.

The latest paper follows on from earlier research which documented the 81% of reefs that bleached in the northern sector of the Great Barrier Reef, 33% in the central section, and 1% in the southern sector, and compared this event with previous bleaching events. Another previous paper documented the reduction in time between bleaching events since the 1980s, down to the current interval of one every six years.

How the 2016 bleaching altered the shape of the northern Great Barrier Reef Different colour morphs of Acropora millepora, each exhibiting a bleaching response during mass coral bleaching event. ARC Centre of Excellence for Coral Reef StudiesStudies/ Gergely Torda

Although reef scientists have been predicting the increased frequency and severity of bleaching events for two decades, this paper has some surprising and alarming results. Bleaching events occur when the temperature rises above the average summer maximum for a sufficient period. We measure this accumulated heat stress in “degree heating weeks” (DHW) – the number of degrees above the average summer maximum, multiplied by the number of weeks. Generally, the higher the DHW, the higher the expected coral death.

The US National Oceanic and Atmospheric Administration has suggested that bleaching generally starts at 4 DHW, and death at around 8 DHW. Modelling of the expected results of future bleaching events has been based on these estimates, often with the expectation the thresholds will become higher over time as corals adapt to changing conditions.

In the 2016 event, however, bleaching began at 2 DHW and corals began dying at 3 DHW. Then, as the sustained high temperatures continued, coral death accelerated rapidly, reaching more than 50% mortality at only 4-5 DHW.

Many corals also died very rapidly, without appearing to bleach beforehand. This suggests that these corals essentially shut down due to the heat. This is the first record of such rapid death occurring at this scale.

This study shows clearly that the structure of coral communities in the northern sector of the reef has changed dramatically, with a predominant loss of branching corals. The post-bleaching reef has a higher proportion of massive growth forms which, with no gaps between branches, provide fewer places for fish and invertebrates to hide. This loss of hiding places is one of the reasons for the reduction of fish populations following severe bleaching events.

Read more: The world's coral reefs are in trouble, but don't give up on them yet

The International Union for Conservation of Nature (IUCN), which produces the Red List of threatened species, recently extended this concept to ecosystems that are threatened with collapse. This is difficult to implement, but this new research provides the initial and post-event data, leaves us with no doubt about the driver of the change, and suggests threshold levels of DHWs. These cover the requirements for such a listing.

Predictions of recovery times following these bleaching events are difficult as many corals that survived are weakened, so mortality continues. Replacement of lost corals through recruitment relies on healthy coral larvae arriving and finding suitable settlement substrate. Corals that have experienced these warm events are often slow to recover enough to reproduce normally so larvae may need to travel from distant healthy reefs.

Although this paper brings us devastating news of coral death at relatively low levels of heat stress, it is important to recognise that we still have plenty of good coral cover remaining on the Great Barrier Reef, particularly in the southern and central sectors. We can save this reef, but the time to act is now.

This is not just for the sake of our precious Great Barrier Reef, but for the people who live close to reefs around the world that are at risk from climate change. Millions rely on reefs for protection of their nations from oceanic swells, for food and for other ecosystem services.

This research leaves no doubt that we must reduce global emissions dramatically and swiftly if we are save these vital ecosystems. We also need to invest in looking after reefs at a local level to increase their chances of surviving the challenges of climate change. This means adequately funding improvements to water quality and protecting as many areas as possible.

Authors: Selina Ward, Senior Lecturer, School of Biological Sciences, The University of Queensland

Read more http://theconversation.com/how-the-2016-bleaching-altered-the-shape-of-the-northern-great-barrier-reef-95142

Retirement Anchored in Model Boat Building for Waterford’s Doug Unsold

WATERFORD — When Doug Unsold sees his ship come in, it’s usually one he’s crafted with his own hands. The 67-year-old retiree from Waterford ...

The Science Behind Alarm Clocks and Your Circadian Rhythm

Waking up on time isn’t just about setting an alarm—it’s about working with your body, not against it. At the heart of every restful night and...

How to Use Plants to Create a Calming Atmosphere in Your Home

In today’s fast-paced world, cultivating a calm, soothing environment at home has never been more important. Whether you live in a busy urban apar...

How Maths Tutoring Can Help Students Master Maths

Mathematics can be a daunting subject for many students, often causing stress and frustration. However, maths tutoring has proven to be an effective...

Refurbished iPads Are Better Than New Ones (Here's Why)

Image by rawpixel.com on Freepik Apple's refurbished iPad program has quietly become one of the best deals in tech. While everyone obsesses over the ...

Your Guide to Finding the Right GP: What Perth City Doctors Offer Today

Choosing a General Practitioner (GP) is one of the most important health decisions you’ll make. Luckily, Perth’s vibrant CBD now hosts a new ge...

Why Every Mining Operation Needs a Robust Safety Management System

Mining is one of the backbones of the Australian economy, particularly in Western Australia. Back in 2019-20, mining contributed 10.4% of Australia...

Australian Classic Literature Enjoys Resurgence

Welcome back to the good old days of storytelling! As the modern world becomes increasingly more demanding, returning to childhood favourites offers...

How to Choose the Right Lawyers in Sydney for Your Situation

When faced with a legal issue, selecting the right legal representation can make all the difference. Whether you're dealing with a personal injury, ...

Building a Governance Model for Headless Content Management at Scale

Image by pch.vector on Freepik There's never been a better time to implement a headless content management system (CMS) to gain the flexibility and ...

Understanding Trade Insurance: Essential Protection for Businesses

Image by Drazen Zigic on Freepik In the current economic environment, trade insurance is an important element for companies trading both locally an...

Choosing the Right Timber for External Cladding

Timber cladding is one of those finishes that pulls double duty: it makes a building look warm and welcoming, and it quietly shields the frame from ...

Top Services Offered by Diesel Mechanics in Brisbane

Keeping a diesel vehicle running at its best takes more than the occasional oil change. When you invest in regular specialist care, you protect the ...

Top 5 Benefits of Hiring Professional House Removalists

Moving day should feel like the start of a new adventure, not the end of your patience. Yet once the settlement papers are signed and the champagne ...

Navigating the Digital Landscape: Managed IT Solutions and IT Services in Townsville

As technology advances at an unprecedented pace, companies must adapt to embrace the transformation ahead. With an evolving technology landscape, mana...

Types of Catering You Should Consider for Your Next Event

Choosing the right type of catering service can elevate your event from ordinary to unforgettable. Whether it’s an elegant wedding, corporate func...

Understanding the Benefits of Split System Installation for Your Home

Climate control is essential to maintaining comfort in your home, especially during the extreme temperatures that many regions face. Whether you’r...

Best Aluminium Window Sliding Designs for Natural Light and Airflow

Bringing natural light and airflow into a space is one of the most efficient ways to create a healthy and comfortable home. In Sydney and across Aus...