Modern Australian
Men's Weekly

.

a particle new to physics might solve the dark matter mystery

  • Written by Celine Boehm, Head of School for Physics, University of Sydney

A team of scientists in Hungary recently published a paper that hints at the existence of a previously unknown subatomic particle. The team first reported finding traces of the particle in 2016, and they now report more traces in a different experiment.

If the results are confirmed, the so-called X17 particle could help to explain dark matter, the mysterious substance scientists believe accounts for more than 80% of the mass in the universe. It may be the carrier of a “fifth force” beyond the four accounted for in the standard model of physics (gravity, electromagnetism, the weak nuclear force and the strong nuclear force).

Read more: Why do astronomers believe in dark matter?

Smashing atoms

Most researchers who hunt for new particles use enormous accelerators that smash subatomic particles together at high speed and look at what comes out of the explosion. The biggest of these accelerators is the Large Hadron Collider in Europe, where the Higgs boson – a particle scientists had been hunting for decades – was discovered in 2012.

Attila J. Krasznahorkay and his colleagues at ATOMKI (the Institute of Nuclear Research in Debrecen, Hungary) have taken a different approach, conducting smaller experiments that fire the subatomic particles called protons at the nuclei of different atoms.

In 2016, they looked at pairs of electrons and positrons (the antimatter version of electrons) produced when beryllium-8 nuclei went from a high energy state to a low energy state.

They found a deviation from what they expected to see when there was a large angle between the electrons and positrons. This anomaly could be best be explained if the nucleus emitted an unknown particle which later “split” into an electron and a positron.

This particle would have to be a boson, which is the kind of particle that carries force, and its mass would be around 17 million electron volts. That’s about as heavy as 34 electrons, which is fairly lightweight for a particle like this. (The Higgs boson, for example, is more than 10,000 times heavier.)

Because of its mass, Krasznahorkay and his team called the hypothetical particle X17. Now they have observed some strange behaviour in helium-4 nuclei which can also be explained by the presence of X17.

This latest anomaly is statistically significant – a seven sigma confidence level, which means there is only a very tiny possibility the result occurred by chance. This is well beyond the usual five-sigma standard for a new discovery, so the result would seem to suggest there is some new physics here.

a particle new to physics might solve the dark matter mystery The new research is led by Attila Krasznahorkay (right). Attila Krasznahorkay

Checking and double checking

However, the new announcement and the one in 2016 have been met with scepticism by the physics community – the kind of scepticism that did not exist when two teams simultaneously announced the discovery of the Higgs boson in 2012.

So why is it so hard for physicists to believe a new lightweight boson like this could exist?

First, experiments of this sort are difficult, and so is the analysis of the data. Signals can appear and disappear. Back in 2004, for example, the group in Debrecen found evidence they interpreted as the possible existence of an even lighter boson, but when they repeated the experiment the signal was gone.

Second, one needs to make sure the very existence of X17 is compatible with the results from other experiments. In this case, both the 2016 result with beryllium and the new result with helium can be explained by the existence of X17 but an independent check from an independent group is still necessary.

Krasznahorkay and his group first reported weak evidence (at a three-sigma level) for a new boson in 2012 at a workshop in Italy.

Since then the team has repeated the experiment using upgraded equipment and successfully reproduced the beryllium-8 results, which is reassuring, as are the new results in helium-4. These new results were presented at the HIAS 2019 symposium at the Australian National University in Canberra.

Read more: Explainer: Standard Model of Particle Physics

What does this have to do with dark matter?

Scientists believe that most of the matter in the universe is invisible to us. So-called dark matter would only interact with normal matter very weakly. We can infer that it exists from its gravitational effects on distant stars and galaxies, but it has never been detected in the lab.

So where does X17 come in?

In 2003, in one of us (Boehm) showed that a particle like X17 could exist, in work co-authored with Pierre Fayet and alone. It would carry force between dark matter particles in much the same way photons, or particles of light, do for ordinary matter.

In one of the scenarios I proposed, lightweight dark matter particles could sometimes produce pairs of electrons and positrons in a way that is similar to what Krasznahorkay’s team has seen.

This scenario has led to many searches in low-energy experiments, which have ruled out a lot of possibilities. However, X17 has not yet been ruled out – in which case the Debrecen group might have indeed discovered how dark matter particles communicate with our world.

More evidence required

While the results from Debrecen are very interesting, the physics community will not be convinced a new particle has indeed been found until there is independent confirmation.

So we can expect many experiments around the world that are looking for a new lightweight boson to start hunting for evidence of X17 and its interaction with pairs of electrons and positrons.

If confirmation arrives, the next discovery might be the dark matter particles themselves.

Authors: Celine Boehm, Head of School for Physics, University of Sydney

Read more http://theconversation.com/the-x17-factor-a-particle-new-to-physics-might-solve-the-dark-matter-mystery-127987

The Value of Professional Rubbish Removal Services

From everyday waste to bulky items like furniture and appliances, finding the right way to dispose of rubbish is not always straightforward. This is...

Why Ugly Websites Sometimes Outperform Beautiful Ones

In the digital age, we're constantly told that first impressions matter, and nowhere does this seem more apparent than in web design. However, a cur...

TPD Claims & Super: What Does It All Mean?

Many Australians hear the term "TPD" in relation to their superannuation and feel completely lost. If you're scratching your head, wondering what it...

What Does Breastfeeding Feel Like? A Guide for New Moms

Frequently, numerous new mothers wonder, "What does breastfeeding feel like?" The feeling is different for each individual - a few describe it as a ...

Best Nail Care Routine for Frequent Nail Polish Wearers

For many people, nail polish is more than a beauty statement – it’s part of their everyday routine. Whether you love bold colours, chic neutrals...

Reinventing Research: How E-Libraries Are Changing Education Forever

A New Chapter for Learning For centuries libraries stood as temples of knowledge filled with shelves that smelled of dust and paper. Today the same...

Psychologists Explore Gestalt Vs Schema Therapy for PTSD Treatment

Recent research has revealed that in 2022, 1 in 9 Australians experienced post-traumatic stress disorder (PTSD). For some, this can significantly im...

Beyond Sunscreen: Building a Sun-Smart Culture in Modern Australia

Australia’s sun-soaked lifestyle is a defining part of its national identity. From beaches and sports fields to weekend barbecues and bushwalks, t...

What is Power BI & Why Should Your Business Use It?

In today's data-driven world, businesses are constantly searching for ways to gain a competitive edge. One tool that has emerged as a game-changer i...

From Service to Strength: How Aussie Veterans Are Rebuilding Their Lives with Everyday Support

Life after military service can bring new challenges. From physical limitations to mental health hurdles, many Australian veterans find everyday hou...

The Best Times of Year to Buy a Caravan

If you're shopping for caravans for sale, timing matters almost as much as the layout and features you desire. The calendar shapes price, stock and ...

The Growing Demand for Smart Living Through Home Automation

Technology has reshaped how we communicate, work, and travel—but now, it’s also changing the way we live at home. The rise of home automation i...

Beyond Clicks and Likes: Why Many Small Businesses in Australia Still Aren’t Leveraging Digital Marketing in 2025

Introduction In 2025, online marketing has become the driving force behind business growth for companies of all sizes. Yet, despite its proven effect...

Lighting Shop Perth: Your Comprehensive Guide to Choosing the Right Lighting Solutions

Lighting is a fundamental element in defining the ambiance, functionality, and aesthetic appeal of any space. Whether you are renovating your home, ...

Private Booze Cruisers – The New Must-Have Toy for Cashed Up Millennials

Did you hear that your 30s are the new 20s? We’ve finally rocked up that adult money and now it’s time to play with it. I was going for a walk ...

Grinding & Jaw Soreness: Signs You Might Need Night Guards and How We Protect Enamel

Waking with a tight jaw, tender muscles, or a dull temple headache is more than a bad night’s sleep. Many Australians grind or clench their teeth ...

Circular Interior Design: Furnishing with Salvaged & Reclaimed Materials

Circular interior design is gradually making its way from niche circles into mainstream Australian homes. At its core, this approach revolves around...

Invisible Braces vs Traditional Braces: Which Is Best for Adults?

Straightening teeth as an adult is common in Australia, and the options are better than ever. The two main choices are clear aligners, also called i...