Modern Australian
Men's Weekly

.

We did a breakthrough 'speed test' in quantum tunnelling, and here's why that's exciting

  • Written by U. Satya Sainadh, Postdoctoral researcher, Technion - Israel Institute of Technology

When you deal with things at the quantum scale, where things are very small, the world is quite fuzzy and bizarre in comparison to our everyday experiences.

For example, we can’t ordinarily walk through solid walls. But at the quantum scale, when a particle encounters a seemingly insurmountable barrier, it can sometimes pass through to the other side – a process known as quantum tunnelling.

But how fast a particle could tunnel through a barrier was always a puzzle.

Read more: What do we mean by meaning? Science can help with that

In work published today in Nature we’ve solved part of the problem.

Why is that important? It’s a breakthrough that could have an impact on future technologies we see in our homes, at work or elsewhere.

Many of today’s technologies – such as semiconductors, the LED screen on your smart phone, or lasers – are based on our understanding of how things work in the quantum world.

So the more we can learn, the more we can develop.

Back to the tunnelling

For quantum particles, such as electrons, when we say they can tunnel through barriers, we don’t refer to a physical obstacles, but barriers of energy.

We did a breakthrough 'speed test' in quantum tunnelling, and here's why that's exciting Things behave differently in the quantum world. Shutterstock/VectorMine

Tunnelling is possible due to the wave nature of the electron. Quantum mechanics assigns wave nature to every particle, and hence there is always a finite probability for the wave to propagate through barriers, just as sound travels through walls.

It may sound counterintuitive, but this is what is exploited in technologies such as scanning tunnelling microscopes, which allow scientists to create images with atomic resolution. This is also naturally observed in nuclear fusion, and in biological processes such as photosynthesis.

Although the phenomenon of quantum tunnelling is well studied and utilised, physicists still lacked a complete understanding of it, especially with regards to its dynamics.

If we could exploit the dynamics of tunnelling – for example, use it to carry more information – it could possibly give us a new handle on future quantum technologies.

A tunnel speed test

The first step towards this goal is to measure the speed of the tunnelling process. This is no simple feat, as the time scales involved in the measurement are extremely small.

For energy barriers the size of few billionths of a metre, as in our experiment, some physicists had calculated the tunnelling process would take around a hundred attoseconds (1 attosecond is a billionth of a billionth of a second).

To put things in perspective, if an attosecond is stretched to a second, then a second equals the age of the universe.

The estimated times are so extremely small that they were previously treated as practically instantaneous. Hence for our experiment we needed a clock that can time these events with enormous accuracy and precision.

The technological advancements in ultrafast laser systems enabled us to implement such a clock at the Australian Attosecond Science Facility, Centre for Quantum Dynamics, at Griffith University.

We did a breakthrough 'speed test' in quantum tunnelling, and here's why that's exciting Part of the experiment set up at the Griffith University lab. U. Satya Sainadh, Author provided

The clock in the experiment is not mechanical or electrical – rather it is the rotating electric field vector of an ultrafast laser pulse.

Light is just electromagnetic radiation made of electric and magnetic fields varying at a rapid rate. We used this rapidly changing field to induce tunnelling in atomic hydrogen and also as a stopwatch to measure when it ends.

How fast?

The choice of using atomic hydrogen (which is simply a bound pair of one electron and one proton) avoids the complications that arise from other atoms, making it easier to compare and interpret the results unambiguously.

The tunnelling time we measured was found to be no more than 1.8 attoseconds, much smaller than some theories had predicted. This measurement calls for a serious reconsideration of our understanding of tunnelling dynamics.

Various theories estimated a range of tunnelling times – from zero to hundreds of attoseconds – and there was no consensus among physicists on which single theoretical estimate was correct.

A basic reason for the disagreements lies in the very concept of time in quantum mechanics. Because of quantum uncertainties, there can be no absolute certainty in the time at which a particle enters into or emerges from the barrier.

But experiments like ours, using precise measurements on simple systems, could guide us in refining our understanding of such times

The next technologies

Quantum leaps in the technological world are often rooted in the quest for fundamental science.

Future quantum technologies that incorporates many of the quantum features – such as superposition and entanglement – will lead to what technologists call the “second quantum revolution”.

Read more: We've designed a 'flux capacitor', but it won't take us Back to the Future

By fully understanding the quantum dynamics of the simplest possible atomic tunnelling event – with a single proton and a single electron – we have shown that certain types of theories can be relied on to give the right answer, where other types of theories fail.

This gives us confidence about what theories to apply to other, more complicated systems.

Measurements at the attosecond scale not only add an extra dimension for the future quantum technologies but also can fundamentally help in understanding the elephant of the quantum room: what is time?

You might also like: In Trust Me, I’m An Expert: The explainer episode, Andrew White, a professor in physics at the University of Queensland, tells us how far quantum mechanics has come, why the research hit a wall, and what exciting breakthroughs might be just around the corner.

Authors: U. Satya Sainadh, Postdoctoral researcher, Technion - Israel Institute of Technology

Read more http://theconversation.com/we-did-a-breakthrough-speed-test-in-quantum-tunnelling-and-heres-why-thats-exciting-113761

Why Ceiling Fans Remain One of the Most Effective Solutions for Year-Round Comfort

Creating a comfortable indoor environment without relying heavily on energy-intensive systems is a priority for many households. Installing ceiling ...

Why an Industrial Air Compressor Is Vital for Modern Manufacturing

In many industrial environments, compressed air is as essential as electricity or water. An industrial air compressor provides the power needed to ...

Why Commercial Carpet Cleaning Services Matter for Professional Spaces

Clean carpets play a major role in shaping how a commercial space looks, feels, and functions. Commercial carpet cleaning services are essential fo...

5 Things to Consider Before Choosing a Commercial Painter

Choosing the right painter for a commercial business can be challenging. Regardless of the type and the size of the property, all commercial project...

Why Medical Fitout Melbourne Practices Rely on for Modern Healthcare Spaces

A well-planned medical fitout Melbourne is essential for creating healthcare environments that support patient care, clinical efficiency, and regula...

Luxury Builders Melbourne Crafting Homes Defined by Design and Detail

Building a premium home is about far more than size or appearance. It is about precision, craftsmanship, and a deep understanding of how refined spa...

Electric Sliding Door Solutions for Modern Living and Commercial Spaces

The way people move through spaces has changed dramatically over the years, and the electric sliding door has become a defining feature of that evol...

Australia’s New Fast Track to Advanced Care in Vietnam

For many Australians, the decision to seek medical care abroad often begins with a specific feeling: the quiet frustration of waiting. According to ...

Cardboard Boxes: A Practical Packaging Solution for Modern Businesses

Reliable cardboard boxes play a vital role in how goods are stored, protected, and transported across industries. From small retailers to large-sca...

The Rise of Smart Homes in Australia: What’s Worth Investing In?

Australia is in the midst of a home technology revolution. From energy efficiency to integrated security, today’s homeowners are transforming thei...

Winter Hairstyling Tips to Prevent Dryness

Winter can be particularly harsh on your hair. Cold air outside, dry indoor heating, and frequent temperature changes can strip moisture from the ha...

Short Term Loans in Australia: Practical Insights for Borrowers and Finance Professionals

Short term loans play a crucial role in Australia’s personal finance landscape. They are designed to cover short-term expenses, unexpected bills, ...

Best EPD Consultants in Australia

Environmental Product Declarations (EPDs) play an increasingly important role in the Australian construction, manufacturing, and infrastructure sect...

I/O Controller And Its Role In Modern Industrial Automation

Industrial automation relies on a range of advanced technologies to ensure precision, speed, and reliability in day-to-day operations. Among these t...

Hydraulic Systems And Their Importance In Modern Industry

A hydraulic system plays a vital role in powering machinery, controlling movement, and delivering high-force performance across countless industrial...

Why Australian Businesses Are Having a Second Think About Digital Growth

Running a business these days is a whole lot different to how it was even a few short years ago. Customers are better informed, there's more competi...

Restaurants Risk Compliance Issues Amid Commercial Plumber Shortage

As demand for housing, roads and facilities increases, so does the demand for trade workers. According to Infrastructure Australia, the construction i...

The Importance Of A Professional Medical Fitout Melbourne For Modern Healthcare Facilities

Healthcare environments must operate with precision, efficiency, and a strong focus on patient comfort. A well-planned medical fitout Melbourne hel...