Modern Australian
Men's Weekly

.

HKU Biomedical Engineering team develops a novel injectable hydrogel that can revolutionise regenerative medicine

HONG KONG SAR - Media OutReach - 31 August 2023 - Researchers from the University of Hong Kong (HKU), the HKU-Shenzhen Hospital and the Princeton University, collaborated to achieve a breakthrough in the development of injectable hydrogels, a highly effective method of administering medicine.

Their innovative product, Fibro-Gel, offers numerous advantages over existing hydrogels and has promising applications in wound healing.

Figure 1. The fabrication of Fibro-gel. The material containing the molecules of a drug, photo initiator (LAP) and polymer (PEGDA) is squeezed out through a microscopic nozzle to form a microfibre that is cut to specified length (Lfibre) by a pulse of the UV light. (Picture is reproduced under the terms of the Creative Commons Attribution License. © 2023 Shen et al. Advanced Materials published by Wiley-VCH GmbH.)
Figure 1. The fabrication of Fibro-gel. The material containing the molecules of a drug, photo initiator (LAP) and polymer (PEGDA) is squeezed out through a microscopic nozzle to form a microfibre that is cut to specified length (Lfibre) by a pulse of the UV light. (Picture is reproduced under the terms of the Creative Commons Attribution License. © 2023 Shen et al. Advanced Materials published by Wiley-VCH GmbH.)

Injectable hydrogel delivery is a highly effective method of administering medicine. A drug is incorporated into a soft gel which is then injected directly where it is required. Another advantage of this method is that the gel releases the drug gradually, allowing for better, more precise control of drug dosage.

Injectable hydrogels have a number of applications – from cancer therapy where they can deliver drugs directly to the tumours, to treating diabetes, regenerating human tissues, and chronic pain management. They are especially suitable for treating wounds, including burns and surgical sites. Hydrogels can deliver growth factors, antibiotics, or anti-inflammatory drugs directly to the wound, aiding the healing process.

However, there have been challenges in hydrogel development, such as the high cost of production, difficulty in scaling up, and the potential for adverse reactions in patients. The Fibro-Gel, created by the research team led by Professor Anderson Ho Cheung Shum from HKU's Department of Mechanical Engineering, together with two groups of collaborators - Professor Michael To's team from The University of Hong Kong-Shenzhen Hospital, and the group of Professor Howard Stone and Dr Janine Nunes from the Department of Mechanical and Aerospace Engineering at Princeton University, addresses these issues.

Fibro-Gel is made by squeezing out a polymer, that contains the molecules of the required drug, through a narrow channel (not unlike toothpaste squeezed out of a tube), and snapping off the microfibres by using a pulse of ultra-violet light.

What sets aside Fibro-Gel from the existing hydrogels is that it is solely aqueous-based, without using oils – which makes it more biocompatible, stable and cheaper to make. In addition, Fibro-Gel is biomimetic – it replicates the properties of biological materials, such as the tissues it is injected into, which prevents adverse reactions. As the result, Fibro-Gel heals wounds faster as it promotes vascularisation – formation of new blood vessels, which plays a crucial role in wound healing.

A revolutionary feature of Fibro-Gel is that it allows the use of different drugs within the same gel, thus enabling controlling and tuning the time of their release. This is very important because the processes of healing and tissue regeneration consist of a sequence of different stages which require administration of specific growth factors and drugs.

Finally, the production of Fibro-Gel production is not costly and can be easily scaled up to manufacturing levels.

The crucial breakthrough was made by PhD student Yanting Shen and postdoctoral fellow Dr Yuan Liu of HKU's Department of Mechanical Engineering – the researchers realised that the release of the drugs from the gel can be controlled and tailored by setting the length of microfibres that the gel consists of.

Longer microfibres become very entangled, resulting in a stiffer, less fluid gel, and it takes longer for the molecules of the drug to be released from it. Conversely, Fibro-Gel with shorter microfibers has lower stiffness and is more fluid fluid-like, resulting in faster rates of drug release.

Leveraging this feature, the researchers designed a multiple drug release system – a gel consisting of multiple layers with different length of microfibres and containing different drugs. These multiple drugs are released from the gel at different times, in sequence, addressing the drawbacks of existing hydrogel systems.

Laboratory testing on mice showed that, compared to commercially available gels, Fibro-Gel regenerates tissues significantly faster, with new tissue forming sooner. Furthermore, using a two-layer Fibro-Gel model, the researchers demonstrated that the release of distinct drugs at different rates enhanced wound healing.

One such potential application of Fibro-Gel is regeneration of brain tissue in people suffering from Parkinson's or Alzheimer's.

Professor Shum emphasised that multidisciplinary collaboration was key in producing Fibre-Gel, "Our collaboration has enabled us to address the topic of wound healing from multiple perspectives. This novel hydrogel has immense potential to address critical medical needs that require more versatile and compatible soft materials."

The successful partnership between HKU and Princeton University, supported by the Research Impact Fund by the Research Grants Council of Hong Kong, exemplifies the power of cross-border collaboration and highlights the significance of pooling expertise to drive groundbreaking research in the field of regenerative medicine.

Their work was published in Advanced Materials in an article "Fibro-Gel: An All-Aqueous Hydrogel Consisting of Microfibers with Tunable Release Profile and its Application in Wound Healing".

Link to the paper: https://onlinelibrary.wiley.com/doi/10.1002/adma.202211637.

Hashtag: #HKU

The issuer is solely responsible for the content of this announcement.

Powering Shepparton’s Businesses: Expert Commercial Electrical Services You Can Count On

When it comes to running a successful business, having reliable, compliant, and efficient electrical systems is non-negotiable. From small retail ou...

Maximise Efficiency: Cleaner Solar Panels for Optimal Performance

Solar panels are a smart investment in energy efficiency, sustainability, and long-term savings—especially here in Cairns, where the tropical sun ...

7 Common Air Conditioner Issues in Melbourne – And How to Fix Them

Image by freepik Living in Melbourne, we all know how unpredictable the weather can be. One moment it’s cold and windy, the next it’s a scorchin...

Powering Palm QLD with Reliable Electrical Solutions

Image by pvproductions on Freepik When it comes to finding a trustworthy electrician Palm QLD locals can count on, the team at East Coast Sparkies s...

The Smart Way to Grow Online: SEO Management Sydney Businesses Can Rely On

If you’re a Sydney-based business owner, you already know the digital space is crowded. But with the right strategy, you don’t need to shout the...

What Your Car Says About You: The Personality Behind the Vehicle

You can tell a lot about someone by the car they drive—or at least, that’s what people think. True Blue Mobile Mechanics reckon the car says a l...

The Confidence Curve: Why Boudoir Photography Is the Empowerment Trend You Didn’t Know You Needed

Boudoir photography has been quietly taking over social feeds, Pinterest boards, and personal milestones—and for good reason. It’s not just abou...

Understanding Level 2 Electricians: Why Sydney Residents Need Licenced Experts for Complex Electrical Work

When it comes to electrical work around the home or business, not all electricians are created equal. In Sydney, particularly when you're dealing wi...

Retirement Anchored in Model Boat Building for Waterford’s Doug Unsold

WATERFORD — When Doug Unsold sees his ship come in, it’s usually one he’s crafted with his own hands. The 67-year-old retiree from Waterford ...

The Science Behind Alarm Clocks and Your Circadian Rhythm

Waking up on time isn’t just about setting an alarm—it’s about working with your body, not against it. At the heart of every restful night and...

How to Use Plants to Create a Calming Atmosphere in Your Home

In today’s fast-paced world, cultivating a calm, soothing environment at home has never been more important. Whether you live in a busy urban apar...

How Maths Tutoring Can Help Students Master Maths

Mathematics can be a daunting subject for many students, often causing stress and frustration. However, maths tutoring has proven to be an effective...

Refurbished iPads Are Better Than New Ones (Here's Why)

Image by rawpixel.com on Freepik Apple's refurbished iPad program has quietly become one of the best deals in tech. While everyone obsesses over the ...

Your Guide to Finding the Right GP: What Perth City Doctors Offer Today

Choosing a General Practitioner (GP) is one of the most important health decisions you’ll make. Luckily, Perth’s vibrant CBD now hosts a new ge...

Why Every Mining Operation Needs a Robust Safety Management System

Mining is one of the backbones of the Australian economy, particularly in Western Australia. Back in 2019-20, mining contributed 10.4% of Australiaâ...

Australian Classic Literature Enjoys Resurgence

Welcome back to the good old days of storytelling! As the modern world becomes increasingly more demanding, returning to childhood favourites offers...

How to Choose the Right Lawyers in Sydney for Your Situation

When faced with a legal issue, selecting the right legal representation can make all the difference. Whether you're dealing with a personal injury, ...

Building a Governance Model for Headless Content Management at Scale

Image by pch.vector on Freepik There's never been a better time to implement a headless content management system (CMS) to gain the flexibility and ...