Modern Australian
The Times Real Estate

.

Having a scan? Here’s how the different types work and what they can find

  • Written by Giovanni Mandarano, Associate Professor in Medical Imaging, Deakin University

Our first introduction to medical imaging occurs when a doctor asks us to have an x-ray or scan to investigate an injury, pain or symptom that cannot otherwise be explained. We can be overwhelmed when we see how complicated, large and noisy some of the equipment is.

Many different types of examinations can be performed to investigate conditions and injuries. Sometimes more than one of the following medical imaging techniques is required to enable doctors to offer the best advice on treatment options.

‘X-rays’ or planar radiography

This is still the most common, widely-available and simplest form of medical imaging, often used to see a broken bone. X-rays are actually photons, or tiny packets of energy (referred to as ionizing radiation) and form part of the electromagnetic spectrum (as does visible light, microwaves and radio waves).

As an x-ray beam passes through human tissue, these x-ray photons can be absorbed and deflected by dense tissue structures such as bone and may not exit the body. Other x-ray photons may encounter tissue that is less dense (such as muscle) and are able to pass through this quite easily and exit the body.

The exiting x-ray photons then reach a digital imaging receptor or detector where they provide a tissue density pattern for the digital receptor to convert into the x-ray image (or radiograph) that we are familiar with.

Dense tissue such as bone that has attenuated the x-ray beam appears dense or white; less dense tissue such as lungs that are filled with air appear less dense or dark, which we observe with a “chest x-ray”. Other tissues in the human body have densities between these two extremes and appear on an x-ray image as different shades of grey.

Patients should be reassured this form medical imaging is straight-forward, and there should be no risk or danger from the radiation when used correctly.

Having a scan? Here’s how the different types work and what they can find The x-ray beam can easily pass through less-dense material such as muscular or soft tissues. It requires higher energy to pass through denser materials such as bone. from www.shutterstock.com

Computed tomography (CT)

This technique uses an x-ray beam to produce cross-sectional images of the human body. When the imaging process is taking place, the x-ray tube continuously emits an x-ray beam and is rotating in a 360 degree circle in a device called a gantry.

While this is happening, the patient is lying on a special CT imaging table that is allowing the x-ray beam through. The x-ray beam is shaped similar to a hand-held fan and is often described as a fan beam. There are multiple digital detectors located within this circular gantry that continually identify the energy of the x-ray photons that exit the patient.

The motion of the table and patient moving through the gantry allows images to be reconstructed as slices (or tomographs) of human tissue. The most common CT exam is to scan a patient’s chest, abdomen and pelvis, and the most common reason for this is to identify the spread of cancer. “X-ray dyes” are injected into patients to identify cancer when using CT imaging, as the cancer tissue will absorb the “x-ray dye” and be more obvious on the image.

With routine CT imaging techniques, there should not be any risks or danger to patients from the levels of radiation used.

Having a scan? Here’s how the different types work and what they can find The rotating x-ray beam in CT scans creates images in the form of slices (or tomographs) of the body and can also be reconstructed using computer software to produce the above images. from www.shutterstock.com

Magnetic resonance imaging (MRI)

MRI uses a combination of a powerful cylindrical magnet and radiofrequency waves to generate an image of the body. It’s quite loud and patients must be wearing suitable hearing protection devices such as earplugs or headphones (where relaxing music can be listened to).

Patients normally lie within the magnet cylinder, and a frame (which works like an antennae) is placed around the body area needing to be imaged, as close as possible, so the maximum possible signal can be detected in order to reconstruct highly detailed images.

Our body contains hydrogen, so a radiofrequency is transmitted into the body at the frequency that will cause hydrogen atoms to oscillate. When the radiofrequency is switched off, the hydrogen atoms continue to oscillate and the frequency of this oscillation is detected by the frame or antennae.

The radiofrequency causes a voltage signal in the antennae, which is identified as an electrical signal. This is then digitised and an image is reconstructed using complex mathematical calculations.

Safety is paramount for patients having an MRI scan, and all patients must complete a safety questionnaire first to ensure they’re compatible with the imaging environment. The safety questionnaire asks if patients have any implanted metal objects such as pacemakers or infusion pumps or similar medical devices. This is because certain metal objects can cause harm to patients or staff if they enter the MRI environment because of the powerful magnet.

The most common application of MRI is imaging the brain with conditions that relate to neurology or neurosurgery.

Having a scan? Here’s how the different types work and what they can find MRI can produce highly detailed images of the brain. from www.shutterstock.com

Positron emission tomography (PET)

The imaging techniques used with x-rays, CT and MRI, are mostly designed to observe structural information – this includes the arrangement of anatomy and the location of disease or injuries. PET imaging is a unique imaging process, as it can identify and image functional information such as metabolic (the converting of energy) or chemical processes of internal body organs.

To do this, radioactive substances need to be injected into patients and these are chemically bonded to compounds used by our organs (such as glucose) or molecules that bind to specific receptors or specific types of cells (such as proteins).

These radioactive substances emit gamma rays (another form of ionizing radiation). From their location within the body, the gamma rays pass through tissue and exit the body where they are detected by a PET scanner containing a gamma camera while the patient is lying still.

The PET scanner detects the gamma rays, converts their intensity or strength into an electrical signal and then reconstructs an image based on this intensity. The detectors are arranged around a patient’s body so the originating location of the gamma rays within the patient can be calculated using mathematical processes.

PET imaging is excellent for identifying the activity of tumours within organs that cannot be structurally identified with other imaging techniques.

Even though the thought of being injected with radioactive material may sound dangerous, it actually isn’t. Imaging techniques similar to this have been around for many decades and PET imaging techniques are performed nearly everyday in major hospitals across Australia.

Having a scan? Here’s how the different types work and what they can find In PET scans patients are injected with radioactive substances that move through the body and emit gamma rays. This means the images can show the functioning of cells and tumours. from www.shutterstock.com

Ultrasound

Ultrasound uses sound waves to generate a medical image of human anatomy, and has no known detrimental effects. The frequency of ultrasound is higher than the sound wave frequencies that can be detected by human hearing. Sound waves can only travel through a medium, so a water-based gel needs to be applied to the skin, which allows the ultrasound to be transmitted from the transducer (or probe - the thing that’s moved over the area being scanned) into the body.

Ultrasound reflects sound waves differently from all the different tissues within the body, the more dense a tissue is, the more sound waves are reflected and returned to the transducer. Where tissue is less dense, part of the sound waves will be returned to the transducer and part of the ultrasound will be transmitted through this tissue until it reaches a different type of tissue and the process continues (partly reflected and partly transmitted).

When ultrasound waves return to the transducer, the sound waves are converted into an electrical signal, which is then digitised and reconstructed as an image. The image is formed by calculating the distance from where the reflected sound waves interacted with tissue and the transducer, and is calculated by knowing that in human tissue, ultrasound travels at approximately 1,540 metres per second.

For many ultrasound imaging examinations, patients are asked to hold their breath so internal organs remain still while imaging is taking place. They may also be asked to move into certain positions.

In addition to providing structural information on how anatomy is arranged, ultrasound has the added benefit of providing biomechanical and functional information, as it can also image in real time and observe muscles and tendons moving.

Ultrasound imaging has two important applications. The first is in pregnancy and the second is to see if muscles and tendons are in some way damaged.

Having a scan? Here’s how the different types work and what they can find Everyone would be familiar with this sight. Ultrasound is used extensively to image during pregnancy. from www.shutterstock.com

Authors: Giovanni Mandarano, Associate Professor in Medical Imaging, Deakin University

Read more http://theconversation.com/having-a-scan-heres-how-the-different-types-work-and-what-they-can-find-99017


No Dig, No Drama: Sydney Pipe Relining Explained

You know that feeling when water starts pooling where it shouldn't? Or received a quote for pipe repairs that made your eyes water? Let's chat about...

The SEO Benefits of AI-Optimized Landing Pages: Smarter Metadata, Faster Load Times

Landing pages are integral to the conversion funnel in digital marketing. Yet, when SEO works well to drive traffic to the landing page, it's just a...

How to Reduce Turbo Lag with an Upgraded Mazda BT-50 Exhaust System

Are you struggling with turbo lag affecting your driving experience?  Did you know upgrading your Mazda BT-50 exhaust system could be the key to u...

How to Segment Email Lists Based on Content Engagement (Not Just Demographics)

Email segmentation generally refers to age, location, gender demographic, and conventional elements. While this could be helpful information, it doe...

6 Qualities to Look for in Local Caravan Dealers

If you're searching for reliable caravan dealers in Campbellfield, it's essential to choose a dealer that offers quality products, excellent custome...

How to Repair a Faema Coffee Machine: A Practical Guide for Coffee Lovers

Introduction If you’re the proud owner of a Faema coffee machine, you already know that it’s more than just a kitchen appliance — it’s a vi...

Smart Health Decisions in Your 30s, 40s, and 50s: The Ultimate Prevention Guide

Making informed health decisions becomes increasingly important as we navigate through different life stages. What may have seemed unimportant in our ...

Sydney’s Electricians Helping Cut Business Costs

Running a business in Sydney isn’t cheap. Between rent, wages, equipment, insurance, and endless operational costs, it’s no wonder business owne...

Can Air Conditioning Help with Allergies and Asthma?

Living with allergies or asthma can make everyday environments feel challenging—especially during certain seasons or in homes where dust, pollen, ...

A Fast Charging Power Bank and Wireless Power Bank: The Future of Power Bank Technology

As the use of mobile devices grows, so does the demand for better, more efficient, faster, and more imaginative methods to power them. Previously re...

How to Extend the Lifespan of Your Power Bank: An Overview

Power banks are vital for ensuring your devices are powered while on the go, especially when on the move, outdoors, or during emergencies. They prov...

What is a Power Bank and How To Choose One

In a world filled with gadgets running out of battery is a real issue. This is where power banks can come in useful. They're portable, they hold pow...

Portable Chargers: How They Work & Essential Tips to Extend Battery Life

Portable chargers (also known as power banks) are essential accessories that keep your devices powered up while on the go — be it outdoor activiti...

How Artificial Tulip Displays Enhance Your Home’s Aesthetic

Artificial tulip displays have grown to be a common option for improving interior decor because of their exquisite look and long-lasting quality. Th...

The Psychology of Relationships: How Therapy Can Strengthen Bonds

Relationships require effort, understanding and communication. Couples and individuals can have better relationships with the assistance of therap...

Taking It Up a Notch: How 12.5kg Dumbbells Fit Into Progressive Overload Training

Photo by Jason Grant on Unsplash When it comes to getting stronger, more sculpted, and better conditioned, one principle reigns supreme in the worl...

Behind the Bowl: What Makes Premium Dog Food Worth the Price Tag?

Photo by Ayla Verschueren on Unsplash When it comes to feeding our four-legged companions, the pet food aisle can be a maze of options—bags promi...

Davines Sustainable Haircare: Revolutionizing Eco-Friendly Beauty Solutions

Davines is a well-known brand in the world of haircare, known for its high-quality products that deliver exceptional results. Its commitment to sust...