Modern Australian
Men's Weekly

.

How we solved the mystery of Libyan desert glass

  • Written by Aaron J. Cavosie, Senior research fellow, Curtin University

In the remote desert of western Egypt, near the Libyan border, lie clues to an ancient cosmic cataclysm.

Libyan desert glass is the name given to fragments of canary-yellow glass found scattered over hundreds of kilometres, between giant shifting sand dunes.

Interest in Libyan desert glass goes back more than 3,000 years. Among items recovered from King Tut’s burial chamber is a gold and jewel-encrusted breastplate. In the centre sits a beautiful scarab beetle, carved from Libyan desert glass.

Libyan desert glass – raw and carved – is easily available today, but how the glass formed has long puzzled scientists.

Our research has found the answer.

The heat is on

Studies show the Libyan desert glass formed about 29 million years ago. The glass is nearly pure silica, which requires temperatures above 1,600℃ to form, and that is hotter than any igneous rock on Earth.

How we solved the mystery of Libyan desert glass Optical light images of a thin slice of Libyan desert glass. Aaron J Cavosie

But few mineral relics survived from whatever caused the melting. Within the glass are rare occurrences of high-temperature minerals, including a form of quartz called cristobalite.

There are also grains of the mineral zircon, although most have reacted to form a higher-temperature mineral called zirconia.

Ideas about how the glass formed include melting during meteorite impact, or melting caused by an airburst from an asteroid or other object burning up high in Earth’s atmosphere.

Despite many studies, definitive proof about which origin is correct has been elusive, until now.

One problem is that no impact crater from any object hitting the ground in the area has been identified as the source of the glass. Another was the lack of evidence of damage from high-pressure shock waves caused by any impact.

Evidence of impact

Our research, published in the journal Geology, reports the first evidence of high-pressure damage, showing the glass formed during a meteorite impact.

Meteorite impacts and airbursts are both catastrophic events. Large meteorite impacts, such as the one that killed the dinosaurs more than 65 million years ago, are rare.

But airbursts occur more frequently. An airburst over Chelyabinsk, Russia, in 2013 caused extensive property damage and injured people.

Boom!

The Chelyabinsk airburst deposited 0.5 megatons of energy into the sky. Despite the damage, that event did not cause melting or shock damage.

In contrast, Libyan desert glass is thought by some to have been caused by a 100-megaton airburst, an event 200 times larger than the Russian airburst.

The airburst idea arose from modelling atmospheric nuclear explosions. Like a nuclear bomb, a large airburst deposits energy into the atmosphere that can melt surface materials. And an airburst does not leave a crater.

Read more: Target Earth: how asteroids made an impact on Australia

The ‘smoking gun’

The new “smoking gun” for understanding the origin of the Libyan desert glass is evidence of an unusual mineral called reidite. Reidite only forms during a meteorite impact, when atoms in the mineral zircon are forced into a tighter arrangement.

Such high-pressure minerals are a hallmark of a meteorite impact, and do not form during airbursts.

Zircon is a common mineral in granite, sandstone and other rock types. It is known from Earth, the Moon, Mars, and various meteorites. It is widely used for dating when rocks formed.

Zircon is also useful when searching for evidence of shock deformation caused by a meteorite impact. At low shock intensity, zircon deforms by bending of the crystal. It is like bending a plastic spoon to the point where it deforms but does not break.

As the shock intensity increases, zircon further responds in several unique ways and at extreme pressures, reidite forms.

If the rocks then get hot, zircon will recrystallise. This results in the formation of a network of new, tiny interlocking grains. Above 1,700℃ zircon ultimately breaks down to zirconia.

Libyan desert glass contains many zircon grains, all smaller than the width of a human hair. While most reacted to zirconia due to the heat, about 10% preserve evidence of former reidite. But the thing is, reidite is no longer present.

Reidite is not stable when hot, and reverts back to zircon above 1,200℃. It only gets preserved if shocked rocks do not melt. So it takes a specialised technique called electron backscatter diffraction to nut out whether reidite once existed in shocked zircons that got hot.

The key to finding evidence of former reidite lies in analysing the crystal orientations of the tiny interlocking grains in reverted zircon.

Similar to turning a Rubik’s cube, the initial transformation to reidite occurs along specific directions in a zircon crystal. When reidite changes back to zircon, it leaves a fingerprint of its existence that can be detected through orientation analysis.

And we found the reidite fingerprint in samples of the Libyan desert glass. We examined zircon grains from seven samples and the critical crystal orientation evidence of former reidite was present in each sample.

How we solved the mystery of Libyan desert glass A closer look at Libyan desert glass: The colors indicate the crystal orientations of tiny interlocking grains of recrystallised zircon. A recrystallized zircon with no history of reidite would be the same color. Aaron J Cavosie, Author provided

A meteor impact

Reidite is rare and only reported from meteorite impact sites. It is found in material ejected from craters and in shocked rocks at craters.

Read more: A disappointing earring, and the world's hottest rock: zirconia

Prior studies have found evidence of former reidite within zircon from impact melt, similar to how it was identified in Libyan desert glass.

A 100 megaton airburst should occur every 10,000 years. If this size event is supposed to have caused Libyan desert glass to form, the geological record does not support the idea. The reidite fingerprint points to a meteor impact as the only option.

Outstanding mysteries about Libyan desert glass still remain, such as the location of the source crater, its size, and determining if it has eroded away.

Authors: Aaron J. Cavosie, Senior research fellow, Curtin University

Read more http://theconversation.com/how-we-solved-the-mystery-of-libyan-desert-glass-117253

Unlock Durability And Beauty With Burnt Timber Cladding Solutions

Imagine a home or commercial space that not only stands the test of time but also tells a story through its very facade. In the world of architectur...

Offroad Caravans: Built for Adventure Beyond the Beaten Track

Australia’s vast and varied landscapes invite travellers to explore far beyond sealed roads and crowded parks. Offroad caravans are purpose-built ...

The Expert's Guide to Understanding Large Bore Steel Pipe Specifications

When it comes to infrastructure, construction, and various industrial applications, the choice of materials is paramount. Among the options availabl...

Preparing for Your First Trip to San Francisco in 2026

San Francisco has long occupied a particular place in the Australian imagination. It is compact yet complex, progressive but historic, and visually st...

Modern Office Painting in Australia - It's the Real Game Changer

Walk into any modern Australian office today and you'll be struck by the fact it's a whole different beast from the ones we grew up with. Gone are t...

How to Choose the Right Suburb for Your Lifestyle

Choosing the right suburb is one of the most important decisions you’ll make when buying or renting a home. Beyond the property itself, the suburb...

Considering Cryolipolysis Fat Freezing? Here’s What You Need to Know

Body confidence can shift over time, and sometimes even good diet and training can still leave a stubborn area of fat that won’t budge. If you’r...

From Local Tradie to Digital Leader: The Strategy Behind Auto Gate Guys Sydney’s Growth

For many small trade businesses, digital marketing still feels like a buzzword, not a necessity. They rely on word-of-mouth referrals, repeat clients...

Electric Automation System: Smarter Control for Modern Electrical Infrastructure

Modern buildings and industrial facilities are increasingly dependent on intelligent control and efficiency. An electric automation system brings t...

The Damp Truth: Why Your Overflowing Gutters Are an Open Invitation for Termites

When it comes to protecting your home, most people think about visible threats — storm damage, cracked tiles, break-ins. But one of the most destruc...

Is Your Inventory a Sitting Duck? 2 Critical Upgrades to Protect Your Business Assets and Your Bottom Line

Imagine this: you finish a long day on the job, lock up your tools, materials, and work vehicle in the garage, and head home. But overnight, someone b...

Electrician in Melbourne: Reliable Electrical Solutions for Homes and Businesses

Finding a dependable electrician Melbourne is essential when safety, efficiency, and long-term performance matter. Electrical systems form the back...

Rims and Tyres for Sale in Sydney: Performance, Safety, and Style Combined

Finding the right rims and tyres for sale Sydney is about far more than appearance. Tyres and rims directly influence how a vehicle handles, brakes...

Why Access to Doctors in Bundoora Is Essential for Ongoing Community Health

Reliable access to healthcare plays a vital role in maintaining physical wellbeing and peace of mind. Having trusted doctors in Bundoora available ...

Pendant Lights: Elevating Interior Spaces With Style and Purpose

Well-chosen pendant lights have the power to transform interiors by combining focused illumination with strong visual impact. More than just a ligh...

What Sets Professional Family Lawyers in Sydney Apart from General Lawyers?

Choosing the right legal support can make a noticeable difference when dealing with family-related matters. This article will explore what separates...

Balancing Teen Academic Expectations and Wellbeing

For many teenagers, school years are shaped by increasing expectations. Academic performance, future pathways, and comparison with peers can create pr...

Why Ceiling Fans Remain One of the Most Effective Solutions for Year-Round Comfort

Creating a comfortable indoor environment without relying heavily on energy-intensive systems is a priority for many households. Installing ceiling ...