Modern Australian
Men's Weekly

.

a new flapping drone can take off, hover and swoop like a bird

  • Written by Javaan Chahl, DST Group Joint Chair of Sensor Systems, University of South Australia

We have developed four-winged bird-like robots, called ornithopters, that can take off and fly with the agility of swifts, hummingbirds and insects. We did this by reverse engineering the aerodynamics and biomechanics of these creatures.

Our ornithopters have the potential to outperform and outmanoeuvre existing drone configurations with static wings or propellers.

Read more: How modern technology is inspired by the natural world

What are ornithopters?

Ornithopters are flying machines based on the design of birds. Existing drone configurations rely on propellers and static wings. Ornithopters flap their wings to generate forward thrust. The complex relationship between aerodynamics and wing movements allows birds and insects to fly in ways that are impossible for conventional drones.

Why do we want ornithopters?

Ornithopters fly differently to conventional drones. They can glide, hover, and perform aerobatics. In different situations, they can either save energy by flying like a regular aeroplane or choose to hover. They can take off and land slowly in tight spaces, yet might quickly soar upwards to perch like a bird.

Current multirotor drones hover very nicely, but use even more energy in forward flight than in hover, so they can’t really travel far. Fixed wing drones can travel efficiently at high speeds, but hovering is not normally possible without compromising the entire design. There are hybrid concepts, usually with wings and rotors. Hybrid aircraft perform poorly when hovering and cruising when compared to other designs due to additional weight and drag from having more parts.

Flapping wings are nature’s original solution to the need to fly both quickly and slowly, as well as landing and taking off from anywhere. For a bird or insect, every part of the system is used for hovering and cruising flight, without carrying redundant thrusters or additional wings.

Existing fixed-wing and rotary-wing drones are so well understood that designs are now near the limits of how efficient they can be. Adding anything new comes at a cost to other aspects of performance.

In principle, ornithopters are capable of more complex missions than conventional aircraft, such as flying long distances, hovering at times, and manoeuvring in tight spaces. Ornithopters are less noisy and safer to use around humans, because of their large wing area and slow wing beats.

How do we make a working ornithopter?

a new flapping drone can take off, hover and swoop like a bird The design of the ornithopter. Chin et al, Science Robotics, Author provided

An ornithopter is a highly complex system. Until now, flapping wing drones have been slow flying and not capable of achieving the speed and power required for vertical aerobatics or sustained hovering.

The few commercially available ornithopters are designed for forward flight. They climb slowly like an underpowered aeroplane, and can’t hover or climb vertically.

Our design is different in several ways.

One difference is that our ornithopters make use of the “clap and fling” effect. The two pairs of wings flap such that they meet, like hands clapping. This makes enough extra thrust to lift their body weight when hovering.

a new flapping drone can take off, hover and swoop like a bird The two pairs of wings meet each time they flap.

We improved efficiency by tuning the wing/body hinge to store and recover the energy of the moving wing when the wings change direction, like a spring. We also discovered that most of the energy loss happened because the gears flexed under the load of driving the wing. We resolved this with minute bearings and by rearranging shafts in the transmission to keep the gears spaced correctly.

The large tail, comprising a rudder and elevator, creates a lot of turning force. This allows aggressive aerobatic manoeuvres and switching fast from horizontal to vertical flight.

The system was designed to be able to pitch nose up, rapidly increasing its angle of attack to the point where the wing does not generate lift, a phenomenon called “dynamic stall”. Dynamic stall creates a lot of drag, turning the wing into a parachute to slow the aircraft. This would be undesirable in many drones, but the ability to enter this state and quickly recover adds to manoeuvrability. This is useful when operating in cluttered environments or landing on a perch.

Catching up with evolution

One of the major findings of our work was that a practical ornithopter might achieve similar efficiency to a propeller driven aircraft. Several behaviours became possible for the ornithopter once some additional power was liberated.

This really showed that optimising the flight apparatus is key to making these new aircraft designs viable. We are now working to use wing designs copied from nature. We hope for equally large improvements.

In some ways, such large efficiency gains from design changes in these new systems should not be surprising. Winged organisms have been optimised by evolution over hundreds of millions of years. We humans have been at it for less than 200 years.

Authors: Javaan Chahl, DST Group Joint Chair of Sensor Systems, University of South Australia

Read more https://theconversation.com/learning-from-nature-a-new-flapping-drone-can-take-off-hover-and-swoop-like-a-bird-143343

Why Commercial Carpet Cleaning Services Matter for Professional Spaces

Clean carpets play a major role in shaping how a commercial space looks, feels, and functions. Commercial carpet cleaning services are essential fo...

5 Things to Consider Before Choosing a Commercial Painter

Choosing the right painter for a commercial business can be challenging. Regardless of the type and the size of the property, all commercial project...

Why Medical Fitout Melbourne Practices Rely on for Modern Healthcare Spaces

A well-planned medical fitout Melbourne is essential for creating healthcare environments that support patient care, clinical efficiency, and regula...

Luxury Builders Melbourne Crafting Homes Defined by Design and Detail

Building a premium home is about far more than size or appearance. It is about precision, craftsmanship, and a deep understanding of how refined spa...

Electric Sliding Door Solutions for Modern Living and Commercial Spaces

The way people move through spaces has changed dramatically over the years, and the electric sliding door has become a defining feature of that evol...

Australia’s New Fast Track to Advanced Care in Vietnam

For many Australians, the decision to seek medical care abroad often begins with a specific feeling: the quiet frustration of waiting. According to ...

Cardboard Boxes: A Practical Packaging Solution for Modern Businesses

Reliable cardboard boxes play a vital role in how goods are stored, protected, and transported across industries. From small retailers to large-sca...

The Rise of Smart Homes in Australia: What’s Worth Investing In?

Australia is in the midst of a home technology revolution. From energy efficiency to integrated security, today’s homeowners are transforming thei...

Winter Hairstyling Tips to Prevent Dryness

Winter can be particularly harsh on your hair. Cold air outside, dry indoor heating, and frequent temperature changes can strip moisture from the ha...

Short Term Loans in Australia: Practical Insights for Borrowers and Finance Professionals

Short term loans play a crucial role in Australia’s personal finance landscape. They are designed to cover short-term expenses, unexpected bills, ...

Best EPD Consultants in Australia

Environmental Product Declarations (EPDs) play an increasingly important role in the Australian construction, manufacturing, and infrastructure sect...

I/O Controller And Its Role In Modern Industrial Automation

Industrial automation relies on a range of advanced technologies to ensure precision, speed, and reliability in day-to-day operations. Among these t...

Hydraulic Systems And Their Importance In Modern Industry

A hydraulic system plays a vital role in powering machinery, controlling movement, and delivering high-force performance across countless industrial...

Why Australian Businesses Are Having a Second Think About Digital Growth

Running a business these days is a whole lot different to how it was even a few short years ago. Customers are better informed, there's more competi...

Restaurants Risk Compliance Issues Amid Commercial Plumber Shortage

As demand for housing, roads and facilities increases, so does the demand for trade workers. According to Infrastructure Australia, the construction i...

The Importance Of A Professional Medical Fitout Melbourne For Modern Healthcare Facilities

Healthcare environments must operate with precision, efficiency, and a strong focus on patient comfort. A well-planned medical fitout Melbourne hel...

Top Safety and Comfort Features to Consider in Family Off Road Caravans

Exploring Australia’s coastline, bush tracks or outback locations is far more enjoyable when travelling in a caravan designed for both comfort and...

“Logistical Nightmare” – Rural and Remote Communities Supply Chain Nightmares

Australia’s road logistics need major reform to counteract the supply chain issues that are hitting rural and regional communities hard. With 80% of...