Modern Australian
Men's Weekly

.

Demand for rare-earth metals is skyrocketing, so we're creating a safer, cleaner way to recover them from old phones and laptops

  • Written by Cristina Pozo-Gonzalo, Senior Research Fellow, Deakin University

Rare-earth metals are critical to the high-tech society we live in as an essential component of mobile phones, computers and many other everyday devices. But increasing demand and limited global supply means we must urgently find a way to recover these metals efficiently from discarded products.

Rare-earth metals are currently mined or recovered via traditional e-waste recycling. But there are drawbacks, including high cost, environmental damage, pollution and risks to human safety. This is where our ongoing research comes in.

Our team in collaboration with the research centre Tecnalia in Spain has developed a way to use environmentally friendly chemicals to recover rare-earth metals. It involves a process called “electrodeposition”, in which a low electric current causes the metals to deposit on a desired surface.

This is important because if we roll out our process to scale, we can alleviate the pressure on global supply, and reduce our reliance on mining.

The increasing demand for rare-earth metals

Rare-earth metals is the collective name for a group of 17 elements: 15 from the “lanthanides series” in the periodic table, along with the elements scandium and yttrium. These elements have unique catalytic, metallurgical, nuclear, electrical, magnetic and luminescent properties.

Read more: Renewables need land – and lots of it. That poses tricky questions for regional Australia

The term “rare” refers to their even, but scarce, distribution around the world, noted after they were first discovered in the late 18th century.

These minerals are critical components of electronic devices, and vital for many green technologies; they’re in magnets for wind power turbines and in batteries for hybrid-electric vehicles. In fact, up to 600 kilograms of rare-earth metals are required to operate just one wind turbine.

White electric car plugged into a charger Rare-earth metals are essential components of electric vehicles. Shutterstock

The annual demand for rare-earth metals doubled to 125,000 tonnes in 15 years, and the demand is projected to reach 315,000 tonnes in 2030, driven by increasing uptake in green technologies and advancing electronics. This is creating enormous pressure on global production.

Can’t we just mine for more rare metals?

Rare-earth metals are currently extracted through mining, which comes with a number of downsides.

First, it’s costly and inefficient because extracting even a very small amount of rare earth metals requires large areas to be mined.

Second, the process can have enormous environmental impacts. Mining for rare earth minerals generates large volumes of toxic and radioactive material, due to the co-extraction of thorium and uranium — radioactive metals which can cause problems for the environment and human health.

Wind turbines over green fields on a sunny day As the uptake in green technologies increases, so does the demand for rare-earth metals and the need to mine. AAP Image/Supplied by Granville Harbour Wind Farm

Third, most mining for rare-earth metals occurs in China, which produces more than 70% of global supply. This raises concerns about long-term availability, particularly after China threatened to restrict its supply in 2019 during its trade war with the US.

E-waste recycling is not the complete answer

Through e-waste recycling, rare-earth metals can be recovered from electronic products such as mobile phones, laptops and electric vehicles batteries, once they reach the end of their life.

For example, recovering them from electric vehicle batteries involves traditional hydrometallurgical (corrosive media treatment) and pyrometallurgical (heat treatment) processes. But these have several drawbacks.

Read more: Clean energy? The world’s demand for copper could be catastrophic for communities and environments

Pyrometallurgy is energy-intensive, involving multiple stages that require high working temperatures, around 1,000℃. It also emits pollutants such as carbon dioxide, dioxins and furans into the atmosphere.

Meanwhile, hydrometallurgy generates large volumes of corrosive waste, such as highly alkaline or acidic substances like sodium hydroxide or sulfuric acid.

Similar recovery processes are also applied to other energy storage technologies, such as lithium ion batteries.

Demand for rare-earth metals is skyrocketing, so we're creating a safer, cleaner way to recover them from old phones and laptops It’s vital to develop safer, more efficient ways to recycle e-waste and avoid mining, as demand for rare-earth metals increases. Shutterstock

Why our research is different

Given these challenges, we set out to find a sustainable method to recover rare-earth metals, using electrodeposition.

Electrodeposition is already used to recover other metals. In our case, we have designed an environmentally friendly composition based on ionic liquid (salt-based) systems.

Read more: Want more jobs in Australia? Cut our ore exports and make more metals at home

We focused on recovering neodymium, an important rare-earth metal due to its outstanding magnetic properties, and in extremely high demand compared to other rare-earth metals. It’s used in electric motors in cars, mobile phones, wind turbines, hard disk drives and audio devices.

Ionic liquids are highly stable, which means it’s possible to recover neodymium without generating side products, which can affect the neodymium purity.

The novelty of our research using ionic liquids for electrodeposition is the presence of water in the mix, which improves the quantity of the final recovered neodymium metal.

Unlike previously reported methods, we can recover neodymium metal without using controlled atmosphere, and at working temperature lower than 100℃. These are key considerations to industrialising such a technology.

Read more: Rare metals play a strategic and essential role in health

At this stage we have proof of concept at lab scale using a solution of ionic liquid with water, recovering neodymium in its most expensive metallic form in a few hours. We are currently looking at scaling up the process.

An important early step

In time, our method could avoid the need to mine for rare earth metals and minimises the generation of toxic and harmful waste. It also promises to help increase economic returns from e-waste.

Importantly, this method could be adapted to recover metals in other end-of-life applications, such as lithium ion batteries, as a 2019 report projected an 11% growth per annum in production in Europe.

Our research is an important early step towards establishing a clean and sustainable processing route for rare-earth metals, and alleviating the pressures on these critical elements.

Authors: Cristina Pozo-Gonzalo, Senior Research Fellow, Deakin University

Read more https://theconversation.com/demand-for-rare-earth-metals-is-skyrocketing-so-were-creating-a-safer-cleaner-way-to-recover-them-from-old-phones-and-laptops-141360

Why Reliable Air Conditioning Services Are Essential for Year-Round Comfort

Melbourne’s climate is known for its unpredictable swings—from scorching summers to chilly winters. This variability makes it crucial for homes ...

Expert Plumbing Solutions in Perth: From Hot Water Systems to Leak Detection

Plumbing is one of those things we often take for granted—until something goes wrong. From stepping into an unexpectedly cold shower to discovering ...

Eco-smart Car Removal in Sydney: Practical Steps That Cut Waste and Return Value

Sydney’s ageing cars add up to a serious waste stream, and choosing the right removal service makes a measurable difference. Your decision sends m...

Measuring the Success of Your Bus Advertising Campaign

Bus ads turn everyday travel into high-reach media. They move through busy corridors, sit in traffic where people can read them, and keep working af...

Partner Visa Pathways: Onshore vs Offshore Applications Explained

Choosing between Australia’s onshore and offshore partner visa routes affects timing, travel, work rights and budget. This guide explains the stru...

Serving Styles Compared: Buffet, Grazing, or Plated for the Office

Choosing how to serve food at a work function shapes the pace of the event, how people mingle and how smoothly the agenda runs. The right format dep...

5 Essential Tips for Hiring Gold Coast Plumbers

Finding the best plumber on the Gold Coast can be as complex as navigating a network of pipes, requiring an expert who is capable, reliable, and s...

Hidden Costs of Moving You Need to Budget For (And How to Avoid Them)

Moving house ranks among life's most busy experiences, and discovering unexpected expenses along the way certainly doesn't help with stress levels. Wh...

Understanding Australian Building Regulations: What Every Mornington Builder Wants You to Know

If you live on the Mornington Peninsula, you likely already feel the risk of bushfires,hot, dry summers, nearby bushland, and epic wind events. That...

Top 5 Home Exercises Recommended by Chiropractors for Better Posture

In today’s world of endless screen time and back-to-back Zoom meetings, it’s no surprise that posture-related issues are on the rise. From achin...

Simple Home Exercises to Manage Chronic Pain and Improve Mobility

Living with chronic pain doesn’t have to mean a life of limitation. Many people struggling with persistent discomfort find themselves moving less...

Smart Renovation Tips for a Sleek, Low-Maintenance Interior

In a world where time is tight and stress is high, our homes should feel like a refuge not another to-do list. That’s why smart renovations are tr...

Stay Cool in Queensland: The Complete Guide to Choosing the Right Air Conditioner

Introduction Queensland’s warm, humid climate makes a reliable air conditioning system an essential part of daily life. Whether you’re creating a...

Proving Partner Visas with Lawyers and Solid Evidence

You’re ready to build a life with your partner in Australia but the visa process quickly turns something personal into something official. Suddenl...

The History and Philosophy Behind Osteopathic Medicine

Osteopathy is more than just a hands-on approach to relieving pain—it’s a holistic health philosophy with roots in history, science, and a deep ...

Common Bathroom Renovation Mistakes and How to Avoid Them

Renovating a bathroom can be one of the most rewarding home improvement projects, offering both enhanced functionality and a fresh aesthetic. Howeve...

5 Simple Home Modifications to Support Occupational Therapy Goals

Every year, thousands of Australians face mobility challenges, chronic pain, or sensory issues that make daily tasks difficult. Simple changes at ho...

The Cost of Converting a Shipping Container into a Liveable Space

Container conversions often require more planning and labour than expected Early costs include foundations, framing, and structural reinforceme...