Modern Australian
Men's Weekly

.

Deep-sea fish larvae rewrite the rules of how eyes can be built

  • Written by Fabio Cortesi, ARC Future Fellow, Faculty of Science, The University of Queensland

The deep sea is cold, dark and under immense pressure. Yet life has found a way to prevail there, in the form of some of Earth’s strangest creatures.

Since deep-sea critters have adapted to near darkness, their eyes are particularly unique – pitch-black and fearsome in dragonfish, enormous in giant squid, barrel-shaped in telescope fish. This helps them catch the remaining rays of sunlight penetrating to depth and see the faint glow of bioluminescence.

Deep-sea fishes, however, typically start life in shallower waters in the twilight zone of the ocean (roughly 50–200 metres deep). This is a safe refuge to feed on plankton and grow while avoiding becoming a snack for larger predators.

Our new study, published in Science Advances, shows deep-sea fish larvae have evolved a unique way to maximise their vision in this dusky environment – a finding that challenges scientific understanding of vertebrate vision.

The nightmare of seeing in the twilight zone

The vertebrate retina, located at the back of the eye, has two main types of light-sensitive photoreceptor cells: rod-shaped for dim light and cone-shaped for bright light.

The rods and cones slowly change position inside the retina when moving between dim and bright conditions, which is why you temporarily go blind when you flick on the light switch on your way to the bathroom at night.

While vertebrates that are active during the daytime and predominantly inhabit bright light environments favour cone-dominated vision, animals that live in dim conditions, such as the deep sea or caves, have lost or reduced their cone cells in favour of more rods.

However, vision in twilight is a bit of a nightmare – neither rods nor cones are working at their best. This raises the question of how some animals, such as larval deep-sea fishes, can overcome the limitations of the cone-and-rod retina not only to survive but even to thrive in twilight conditions.

Two small fish against a black background.
Deep-sea fish, such as Maurolicus muelleri and Maurolicus mucronatus live in an environment that is cold, dark and under immense pressure. Dr Wen Sung Chung

Starting where the fish start

To understand how newly born deep-sea fishes see, we had to start where they do: in the twilight zone of the ocean.

We caught larval fish from the Red Sea using fine-meshed nets towed from near the surface to a depth of around 200m. This way we got hold of three different species – the lightfish (Vinciguerria mabahiss) and the hatchetfish (Maurolicus mucronatus), both members of the dragonfishes, and a member of the lanternfishes, the skinnycheek lanternfish (Benthosema pterotum). Next, we studied what their photoreceptor cells looked like on the outside and how they were wired on the inside.

First, we used high-resolution microscopy to examine the cells’ shape in great detail. Then we investigated retinal gene expression to identify which vision genes were activated as the fish grew. Finally, we got some experts in computational modelling of visual proteins on board to simulate which wavelengths of light these tiny fishes may perceive.

By combining all the approaches, we were able to piece together a picture of how these animals see their world. This sounds relatively simple, but working with deep-sea fishes is anything but easy.

While these animals are generally thought of as monsters of the deep, in reality, most reach only about the size of a thumb – even when fully grown. They are also very fragile and difficult to get.

Working with larval specimens that are only a few millimetres long is even more difficult. However, by leveraging support from the deep-sea research community, we were fortunate enough to combine specimens from multiple research expeditions to piece together an unusually complete picture of visual development in these elusive animals.

Deep-sea fish larvae rewrite the rules of how eyes can be built
Anglerfishes are often depicted as the giant monsters of the deep, but in reality they are relatively. small, around the size of a hand at best. Dr Wen-Sung Chung

So, what did we discover?

For decades, scientists have thought that, as vertebrates grow, the development of their retina follows a predictable pattern: cones form first, then rods. But the deep-sea fish we studied do not follow this rule.

We found that, as larvae, they mostly use a mix-and-match type of hybrid photoreceptor. The cells they are using early on look like rods but use the molecular machinery of cones, making them rod-like cones.

In some of the species we studied, these hybrid cells were a temporary solution, replaced by “normal” rods as the fish grew and migrated into deeper, darker waters.

However, in the hatchetfish, which spends its whole life in twilight, the adults keep their rod-like cone cells throughout life, essentially building their entire visual system around this extra type of cell.

Our research shows this is not a minor tweak to the system. Instead, it represents a fundamentally different developmental pathway for vertebrate vision.

Biology doesn’t fit into neat boxes

So why bother with these hybrid cells?

It seems that to overcome the visual limitations of the twilight zone, rod-like cones offer the best of both worlds: the light-capturing ability of rods combined with the faster, less bright-light sensitive properties of cones. For a tiny fish trying to survive in the murky midwater, this could mean the difference between spotting dinner or becoming it.

For more than a century, biology textbooks have taught that vertebrate vision is built from two clearly defined cell types. Our findings show these tidy categories are much more blurred.

Deep-sea fish larvae combine features of both rods and cones into a single, highly specialised cell optimised for life in between light and darkness. In the murky depths of the ocean, deep-sea fish larvae have quietly rewritten the rules of how eyes can be built, and in doing so, remind us that biology rarely fits into neat boxes.

Authors: Fabio Cortesi, ARC Future Fellow, Faculty of Science, The University of Queensland

Read more https://theconversation.com/deep-sea-fish-larvae-rewrite-the-rules-of-how-eyes-can-be-built-275552

How a Burleigh Heads Plumber Tests for Pipe Leaks

Pipe leaks can be deceptively difficult to spot. Some announce themselves with a steady drip under the sink, but many develop quietly behind walls, ...

What Local Businesses Should Expect from IT Services in Melbourne?

If you run a Melbourne business with roughly 7–100 staff, you have probably noticed something over the last couple of years. The IT problems got m...

How Professional Cleaning Improves Indoor Air Quality

Indoor air quality (IAQ) plays a crucial role in our health, comfort, and overall wellbeing. Australians spend nearly 90% of their time indoors-at hom...

Solar and Solar Battery Systems: Powering Smarter Homes in Victoria

As energy prices continue to rise and sustainability becomes a priority for Australian homeowners, more families are investing in Solar and Solar Ba...

Plumbing Emergency Melbourne: What to Do When Every Minute Counts

A sudden plumbing issue can quickly turn into a major disaster if not handled promptly. From burst pipes and overflowing toilets to leaking gas line...

Why Older Melbourne Homes Require Detailed Building & Pest Inspections

Older homes make up a large part of Melbourne’s housing stock. Victorian terraces, Edwardian houses, Californian bungalows, and post-war brick hom...

7 Essential Tips for Choosing Reliable Moving Services in Perth

Moving to a new home or office can be exciting, but it also comes with stress, planning, and plenty of decisions. One of the most important choices yo...

How to Find the Best Real Estate Agent Near You on the Central Coast

Choosing the right real estate agent can make a major difference to your final sale price, days on market, and overall experience. The Central Coast...

Unlock Durability And Beauty With Burnt Timber Cladding Solutions

Imagine a home or commercial space that not only stands the test of time but also tells a story through its very facade. In the world of architectur...

Offroad Caravans: Built for Adventure Beyond the Beaten Track

Australia’s vast and varied landscapes invite travellers to explore far beyond sealed roads and crowded parks. Offroad caravans are purpose-built ...

The Expert's Guide to Understanding Large Bore Steel Pipe Specifications

When it comes to infrastructure, construction, and various industrial applications, the choice of materials is paramount. Among the options availabl...

Preparing for Your First Trip to San Francisco in 2026

San Francisco has long occupied a particular place in the Australian imagination. It is compact yet complex, progressive but historic, and visually st...

Modern Office Painting in Australia - It's the Real Game Changer

Walk into any modern Australian office today and you'll be struck by the fact it's a whole different beast from the ones we grew up with. Gone are t...

How to Choose the Right Suburb for Your Lifestyle

Choosing the right suburb is one of the most important decisions you’ll make when buying or renting a home. Beyond the property itself, the suburb...

Considering Cryolipolysis Fat Freezing? Here’s What You Need to Know

Body confidence can shift over time, and sometimes even good diet and training can still leave a stubborn area of fat that won’t budge. If you’r...

From Local Tradie to Digital Leader: The Strategy Behind Auto Gate Guys Sydney’s Growth

For many small trade businesses, digital marketing still feels like a buzzword, not a necessity. They rely on word-of-mouth referrals, repeat clients...

Electric Automation System: Smarter Control for Modern Electrical Infrastructure

Modern buildings and industrial facilities are increasingly dependent on intelligent control and efficiency. An electric automation system brings t...

The Damp Truth: Why Your Overflowing Gutters Are an Open Invitation for Termites

When it comes to protecting your home, most people think about visible threats — storm damage, cracked tiles, break-ins. But one of the most destruc...